JOM 21430PC

Preliminary communication

Isolation, characterisation, and crystal and molecular structure of $\left[\mathrm{Os}_{6} \mathrm{AuC}(\mathrm{CO})_{20}(\mu\right.$-OMe $\left.)\right]$

Caroline M. Hay, Brian F.G. Johnson, Jack Lewis ${ }^{\star}$, Neville D. Prior, Paul R. Raithby and Wing Tak Wong
University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW (UK)

(Received September 24th, 1990)

Abstract

Treatment of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{AuPEt}_{3}\right)(\mu\right.$-COMe $\left.)\right]$ with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{NCMe}_{2}\right]\right.$ in refluxing toluene affords the new carbido compound $\left[\mathrm{Os}_{6} \mathrm{AuC}(\mathrm{CO})_{20}(\mu-\mathrm{OMe})\right]$ (1). A single-crystal X-ray structure analysis of 1 shows that an Os_{2} fragment and an Os_{4} carbido fragment are linked together by a gold atom.

The chemistry of heterometallic osmium and ruthenium clusters containing Group IB metals is well established for systems with up to four osmium or ruthenium atoms [1], but for higher nuclearity systems there are relatively few examples [2]. Much of the work involving the use of Group IB metals stems from the isolobal relationship between a hydride ligand and a MPR ${ }_{3}$ fragment $(M=C u$, Ag and Au), but for clusters with nuclearities of four and above there are a number of examples where the isolobal analogy breaks down [3] and the structures adopted by the hydrido clusters and the Group IB analogues differ [4]. In the context of this general area, it is of interest to study the interaction between cluster-bound hydrogen atoms, or Group IB metal-ligand fragments, and carbido-carbon atoms, since the formation of $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{M}$ bonds mimics the process which occur on metal surfaces in catalytic reactions. Reactions between hydrogen-containing ligands and the semi-exposed carbide in "butterfly" clusters of iron and ruthenium have been reported [5], but there are few examples of analogous Group IB metal chemistry where a product is formed in which there is an interaction between the carbide and the Group IB metal atom or atoms [6,7]. We now report the preparation of a new hexaosmium carbido cluster $\left[\mathrm{Os}_{6} \mathrm{AuC}(\mathrm{CO})_{20}(\mu\right.$-OMe) $]$ (1) in which there is a direct interaction between the carbide a "bare" gold atom.

Treatment of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{AuPEt}_{3}\right)(\mu-\mathrm{COMe})\right]$ with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ in refluxing toluene affords a brown-red solution after 3 h , which after chromatography on silica gave a brown compound, formulated as $\left[\mathrm{Os}{ }_{6} \mathrm{AuC}(\mathrm{CO})_{20}(\mu-\mathrm{OMe})\right]$ (1), on the basis of spectroscopic data [MS: $m / z=1940\left({ }^{190} \mathrm{Os}\right)$; IR ($\nu(\mathrm{CO}), \mathrm{cm}^{-1}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2117w, 2086m, 2072vs, 2050s, 2035m, 2012m,sh, 2000m; ${ }^{1} \mathrm{H}$ NMR

Fig. 1. The molecular structure of $\left[\mathrm{Os}_{6} \mathrm{AuC}(\mathrm{CO})_{20}(\mu-\mathrm{OMe})\right]$ (1). Bond lengths: $\mathrm{Os}(1)-\mathrm{Os}(3), 2.802(3)$; $\mathrm{Os}(1)-\mathrm{Os}(4), 2.862(3) ; \mathrm{Os}(2)-\mathrm{Os}(3), 2.864(4) ; \mathrm{Os}(2)-\mathrm{Os}(4), 2.79$ (3); $\mathrm{Os}(5)-\mathrm{Os}(6), 2.727(3) ; \mathrm{Os}(1)-\mathrm{Au}(1)$ $2.839(3) ; \mathrm{Os}(2)-\mathrm{Au}(1)$, 2.822(3); $\mathrm{Os}(5)-\mathrm{Au}(1), 2.664(3) ; \mathrm{Os}(6)-\mathrm{Au}(1), 2.669(3) ; \mathrm{Os}(3) \cdots \mathrm{Os}(4), 3.306(3)$; $\mathrm{Os}(1)-\mathrm{C}(1), 1.83(5) ; \mathrm{Os}(2)-\mathrm{C}(1), 1.95(5) ; \mathrm{Os}(3)-\mathrm{C}(1), 2.13(5) ; \mathrm{Os}(4)-\mathrm{C}(1), 2.16(4) ; \mathrm{Au}(1)-\mathrm{C}(1), 2.06(4)$; $\mathrm{Os}(4)-\mathrm{O}(1), 2.15(4) ; \mathrm{Os}(3)-\mathrm{O}(1), 2.09(3) ; \mathrm{O}(1)-\mathrm{C}(2), 1.32(8) \AA$. Bond angles: $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2), 83.5(1)$; $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(4), 71.4(1) ; \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(4), 71.4(1) ; \mathrm{Os}(1)-\mathrm{Au}(1)-\mathrm{Os}(2), 83.6(1) ; \mathrm{Au}(1)-\mathrm{Os}(1)-$ $\mathrm{Os}(3), 84.8(1) ; \mathrm{Au}(1)-\mathrm{Os}(2)-\mathrm{Os}(3), 84.0(1) ; \mathrm{Os}(1)-\mathrm{Au}(1)-\mathrm{Os}(6), 169.1(1) ; \mathrm{Os}(2)-\mathrm{Au}(1)-\mathrm{Os}(5), 168.7(1)$; $\mathrm{Os}(2)-\mathrm{Au}(1)-\mathrm{Os}(6), 107.2(1) ; \mathrm{Os}(1)-\mathrm{Au}(1)-\mathrm{Os}(5), 107.7(1) ; \mathrm{Os}(5)-\mathrm{Au}(1)-\mathrm{Os}(6), 61.5(1) ; \mathrm{Au}(1)-\mathrm{Os}(6)-$ $\mathrm{Os}(5), 59.2(1) ; \mathrm{Au}(1)-\mathrm{Os}(5)-\mathrm{Os}(6), 59.3(1) ; \mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{Os}(2), 177(2) ; \mathrm{Os}(4)-\mathrm{C}(1)-\mathrm{Os}(3), 101(2) ; \mathrm{Os}(3)-$ $\mathrm{C}(1)-\mathrm{Au}(1), 130(2) ; \mathrm{Os}(4)-\mathrm{C}(1)-\mathrm{Au}(1), 129(3) ; \mathrm{Os}(3)-\mathrm{O}(1)-\mathrm{Os}(4), 103(2)^{\circ}$.
$\left.\delta\left(\mathrm{CDCl}_{3}\right) ; 2.90\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)\right]$. Single crystals of 1 were obtained from a solution of 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane mixture at $-25^{\circ} \mathrm{C}$. The molecular structure of 1 , established by X-ray crystallography, is shown in Fig. 1 together with some important bond parameters *. The molecule consists of an Os_{2} fragment linked to an Os_{4} carbido fragment via a bare Au atom. The $\mathrm{Os}_{2}(\mathrm{CO})_{8}$ fragment is symmetrically bridged by the Au atom with a short $\mathrm{Os}-\mathrm{Os}$ distance of $2.727(3) \AA$. The Os_{4} fragment adopts a pseudo-butterfly arrangement with the gold atom spanning the two "wingtip" Os atoms. The carbido-carbon atom is semi-encapsulated within this $\mathrm{Os}_{4} \mathrm{Au}$ metal framework, which is likely to originate from μ-COMe group. The description of the Os_{4} framework as a butterfly is not completely accurate, as the "hinge" $\mathrm{Os}(3)-\mathrm{Os}(4)$ separation of $3.306(3) \AA$ is too long to be considered as a formal bond. This edge breaking is expected as a three-electron donor ligand (μ-OMe) is bridging this Os-Os edge. Similarly, in $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mathrm{CO}_{2} \mathrm{Me}\right)(\mu-\mathrm{I})\right][8]$ the hinge of the bridged
butterfly is broken by the ($\mu-\mathrm{I}$) ligand contributing three electrons. The average Os-Os bond length within the butterfly is $2.83(3) \AA$, which is similar to the average Os-Os length of $2.87(1) \AA$ in $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}(\mu-\mathrm{H})\left(\mathrm{CO}_{2} \mathrm{Et}\right)\right.$] [8] and shorter than the average $2.918(9) \AA$ in $\left[\mathrm{Os} 5 \mathrm{C}(\mathrm{CO})_{14}\left(\mathrm{CO}_{2} \mathrm{Me}\right)(\mu-\mathrm{I})\right][8]$. The Au atom displays a very unusual five-fold formal coordination geometry. The two long [average 2.831(3) \AA] and two short [average $2.666(3) \AA$] Os-Au distances are associated with the butterfly fragment and Os_{2} unit, respectively. The $\mathrm{Au}-\mathrm{C}$ (carbido) distance [2.06(4) \AA] is similar to those in $\left[\mathrm{Ru}_{4} \mathrm{C}(\mathrm{CO})_{12}\left(\mathrm{AuPPh}_{3}\right) \mathrm{I}\right][6]$ and $\left[\mathrm{HFe}_{4} \mathrm{C}(\mathrm{CO})_{12}\left(\mathrm{AuPPh}_{3}\right)\right]$ [7]. The best description of the bonding of the Au atom is to consider that it has σ-lobes pointing towards the carbide and the mid-point of the $\mathrm{Os}(5)-\mathrm{Os}(6)$ edge, while the bonding to $\mathrm{Os}(1)$ and $\mathrm{Os}(2)$ is through tangential orbitals. All OsC (carbido) distances are within the expected range.

Whilst the mechanism for the formation of 1 is unclear, it is evident that the $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ acts as an acceptor for the phosphine ligands as small amounts of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{PEt}_{3}\right]$ are isolated from the reaction mixture. Under similar reaction conditions $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{H})(\mu\right.$-COMe)], the corresponding hydrido cluster of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{AuPEt}_{3}\right)(\mu\right.$-COMe $\left.)\right]$, failed to react with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$.

Acknowledgements. We thank the Royal Commission for the Exhibition of 1851 (W.T.W.) and S.E.R.C. (C.M.H. and N.D.P.) for the financial support.

References

1 I.D. Salter, Adv. Organomet. Chem., 29 (1989) 249.
2 B.F.G. Johnson, D.A. Kaner, J. Lewis and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1981) 753; B.F.G. Johnson, J. Lewis, W.J.H. Nelson, P.R. Raithby and M.D. Vargas, J. Chem. Soc., Chem. Commun., (1983) 608; S.R. Drake, K. Henrick, B.F.G. Johnson, J. Lewis, M. McPartlin and J. Morris, J. Chem. Soc., Chem. Commun., (1986) 928.

3 C.E. Housecroft and A.L. Rheingold, Organometallics, 6 (1987) 1332.
4 J.A.K. Howard, I.D. Salter and F.G.A. Stone, Polyhedron, 3 (1984) 567; T. Adatia, M. McPartlin and I.D. Salter, J. Chem. Soc., Dalton Trans., (1988) 751.

5 J.S. Bradley, Adv. Organomet. Chem., 22 (1983) 1.
6 A.G. Cowie, B.F.G. Johnson, J. Lewis and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1984) 1710.
7 B.F.G. Johnson, D.A. Kaner, J. Lewis, P.R. Raithby and M.J. Rosales, J. Organomet. Chem., 231 (1982) C59; B.F.G. Johnson, D.A. Kaner, J. Lewis and M.J. Rosales, J. Organomet. Chem., 238 (1982) C73.
8 D. Braga, P.F. Jackson, B.F.G. Johnson, J. Lewis, M. McPartlin, J.N. Nicholls and M.D. Vargas, J. Chem. Soc., Chem. Commun., (1982) 966.

[^0]
[^0]: * Crystal data: $\left[\mathrm{Os}_{6} \mathrm{AuC}(\mathrm{CO})_{20}\left(\mu\right.\right.$-OMe)] $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{23} \mathrm{H}_{5} \mathrm{AuCl}_{2} \mathrm{O}_{21} \mathrm{Os}_{6}, \quad M=2026.4$, Triclinic, space group $P \overline{1}, a=9.724(2), b=11.807(2), c=16.578(4) \AA, \alpha=94.68(2), \quad \beta=95.21(3), \gamma=91.17(2)^{\circ}$, $V=1888.4 \AA^{3}, D_{c}=3.563 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2, \mathrm{~F}(000)=1760, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=242.03$ cm^{-1}. Red irregular block, crystal dimensions: $0.08 \times 0.33 \times 0.56 \mathrm{~mm} .5290$ reflections measured on Stoe-Siemens four circle diffractometer $\left(5.0 \leqslant 2 \theta \leqslant 45.0^{\circ}\right)$, corrected for absorption, 4942 unique reflections and 3320 observed with $F>4 \sigma(F)$, structure solved by a combination of direct methods and difference Fourier techniques and refined by blocked full-matrix least-squares analysis, with Os and Au atoms assigned anisotropic displacement parameters. The asymmetric unit contains a solvent molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which has been confirmed by ${ }^{1} \mathrm{H}$ NMR of a crystallised sample of 1 [$\delta\left(\mathrm{CDCl}_{3}\right)$: $\left.5.32\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$. The weighting scheme employed was $w=6.3428 /\left[\sigma^{2}(F)+0.0012 F^{2}\right]$. The final residuals were $R=0.086$ and $R_{w}=0.088$. The atomic coordinates for this work have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (UK).

