Preliminary communication

## Isolation, characterisation, and crystal and molecular structure of $[Os_6AuC(CO)_{20}(\mu-OMe)]$

Caroline M. Hay, Brian F.G. Johnson, Jack Lewis \*, Neville D. Prior, Paul R. Raithby and Wing Tak Wong

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (UK)

(Received September 24th, 1990)

## Abstract

Treatment of  $[Os_3(CO)_{10}(\mu-AuPEt_3)(\mu-COMe)]$  with  $[Os_3(CO)_{10}(NCMe)_2]$  in refluxing toluene affords the new carbido compound  $[Os_6AuC(CO)_{20}(\mu-OMe)]$  (1). A single-crystal X-ray structure analysis of 1 shows that an Os<sub>2</sub> fragment and an Os<sub>4</sub> carbido fragment are linked together by a gold atom.

The chemistry of heterometallic osmium and ruthenium clusters containing Group IB metals is well established for systems with up to four osmium or ruthenium atoms [1], but for higher nuclearity systems there are relatively few examples [2]. Much of the work involving the use of Group IB metals stems from the isolobal relationship between a hydride ligand and a MPR<sub>3</sub> fragment (M = Cu, Ag and Au), but for clusters with nuclearities of four and above there are a number of examples where the isolobal analogy breaks down [3] and the structures adopted by the hydrido clusters and the Group IB analogues differ [4]. In the context of this general area, it is of interest to study the interaction between cluster-bound hydrogen atoms, or Group IB metal-ligand fragments, and carbido-carbon atoms, since the formation of C-H or C-M bonds mimics the process which occur on metal surfaces in catalytic reactions. Reactions between hydrogen-containing ligands and the semi-exposed carbide in "butterfly" clusters of iron and ruthenium have been reported [5], but there are few examples of analogous Group IB metal chemistry where a product is formed in which there is an interaction between the carbide and the Group IB metal atom or atoms [6,7]. We now report the preparation of a new hexaosmium carbido cluster  $[Os_6AuC(CO)_{20}(\mu-OMe)]$  (1) in which there is a direct interaction between the carbide a "bare" gold atom.

Treatment of  $[Os_3(CO)_{10}(\mu$ -AuPEt<sub>3</sub>)( $\mu$ -COMe)] with  $[Os_3(CO)_{10}(NCMe)_2]$  in refluxing toluene affords a brown-red solution after 3 h, which after chromatography on silica gave a brown compound, formulated as  $[Os_6AuC(CO)_{20}(\mu$ -OMe)] (1), on the basis of spectroscopic data [MS: m/z = 1940 (<sup>190</sup>Os); IR ( $\nu$ (CO), cm<sup>-1</sup>, CH<sub>2</sub>Cl<sub>2</sub>): 2117w, 2086m, 2072vs, 2050s, 2035m, 2012m,sh, 2000m; <sup>1</sup>H NMR



Fig. 1. The molecular structure of  $[Os_6AuC(CO)_{20}(\mu-OMe)]$  (1). Bond lengths: Os(1)-Os(3), 2.802(3); Os(1)-Os(4), 2.862(3); Os(2)-Os(3), 2.864(4); Os(2)-Os(4), 2.799(3); Os(5)-Os(6), 2.727(3); Os(1)-Au(1) 2.839(3); Os(2)-Au(1), 2.822(3); Os(5)-Au(1), 2.664(3); Os(6)-Au(1), 2.669(3);  $Os(3) \cdots Os(4)$ , 3.306(3); Os(1)-C(1), 1.83(5); Os(2)-C(1), 1.95(5); Os(3)-C(1), 2.13(5); Os(4)-C(1), 2.16(4); Au(1)-C(1), 2.06(4); Os(4)-O(1), 2.15(4); Os(3)-O(1), 2.09(3); O(1)-C(2), 1.32(8) Å. Bond angles: Os(1)-Os(3)-Os(2), 83.5(1); Os(3)-Os(2)-Os(4), 71.4(1); Os(3)-Os(1)-Os(4), 71.4(1); Os(1)-Au(1)-Os(2), 83.6(1); Au(1)-Os(1)-Os(3), 84.8(1); Au(1)-Os(2)-Os(3), 84.0(1); Os(1)-Au(1)-Os(6), 169.1(1); Os(2)-Au(1)-Os(5), 168.7(1); Os(2)-Au(1)-Os(6), 107.2(1); Os(1)-Au(1)-Os(5), 107.7(1); Os(5)-Au(1)-Os(6), 61.5(1); Au(1)-Os(6)-Os(5), 59.2(1); Au(1)-Os(5)-Os(6), 59.3(1); Os(3)-O(1)-Os(4), 171(2); Os(4)-C(1)-Os(3), 101(2); Os(3)-C(1)-Au(1), 130(2); Os(4)-C(1)-Au(1), 129(3); Os(3)-O(1)-Os(4), 103(2)°.

 $\delta(\text{CDCl}_3)$ ; 2.90 (s,OCH<sub>3</sub>)]. Single crystals of 1 were obtained from a solution of 1 in CH<sub>2</sub>Cl<sub>2</sub>/n-hexane mixture at  $-25^{\circ}$ C. The molecular structure of 1, established by X-ray crystallography, is shown in Fig. 1 together with some important bond parameters \*. The molecule consists of an Os<sub>2</sub> fragment linked to an Os<sub>4</sub> carbido fragment via a bare Au atom. The Os<sub>2</sub>(CO)<sub>8</sub> fragment is symmetrically bridged by the Au atom with a short Os–Os distance of 2.727(3) Å. The Os<sub>4</sub> fragment adopts a pseudo-butterfly arrangement with the gold atom spanning the two "wingtip" Os atoms. The carbido-carbon atom is semi-encapsulated within this Os<sub>4</sub>Au metal framework, which is likely to originate from  $\mu$ -COMe group. The description of the Os<sub>4</sub> fragmework as a butterfly is not completely accurate, as the "hinge" Os(3)–Os(4) separation of 3.306(3) Å is too long to be considered as a formal bond. This edge breaking is expected as a three-electron donor ligand ( $\mu$ -OMe) is bridging this Os–Os edge. Similarly, in [Os<sub>5</sub>C(CO)<sub>14</sub>(CO<sub>2</sub>Me)( $\mu$ -I)] [8] the hinge of the bridged

butterfly is broken by the ( $\mu$ -I) ligand contributing three electrons. The average Os-Os bond length within the butterfly is 2.83(3) Å, which is similar to the average Os-Os length of 2.87(1) Å in  $[Os_5C(CO)_{14}(\mu$ -H)(CO<sub>2</sub>Et)] [8] and shorter than the average 2.918(9) Å in  $[Os_5C(CO)_{14}(CO_2Me)(\mu$ -I)] [8]. The Au atom displays a very unusual five-fold formal coordination geometry. The two long [average 2.831(3) Å] and two short [average 2.666(3) Å] Os-Au distances are associated with the butterfly fragment and Os<sub>2</sub> unit, respectively. The Au-C(carbido) distance [2.06(4) Å] is similar to those in [Ru<sub>4</sub>C(CO)<sub>12</sub>(AuPPh<sub>3</sub>)I] [6] and [HFe<sub>4</sub>C(CO)<sub>12</sub>(AuPPh<sub>3</sub>)] [7]. The best description of the bonding of the Au atom is to consider that it has  $\sigma$ -lobes pointing towards the carbide and the mid-point of the Os(5)–Os(6) edge, while the bonding to Os(1) and Os(2) is through tangential orbitals. All Os-C(carbido) distances are within the expected range.

Whilst the mechanism for the formation of 1 is unclear, it is evident that the  $[Os_3(CO)_{10}(NCMe)_2]$  acts as an acceptor for the phosphine ligands as small amounts of  $[Os_3(CO)_{10}(PEt_3)_2]$  and  $[Os_3(CO)_{11}PEt_3]$  are isolated from the reaction mixture. Under similar reaction conditions  $[Os_3(CO)_{10}(\mu-H)(\mu-COMe)]$ , the corresponding hydrido cluster of  $[Os_3(CO)_{10}(\mu-AuPEt_3)(\mu-COMe)]$ , failed to react with  $[Os_3(CO)_{10}(NCMe)_2]$ .

Acknowledgements. We thank the Royal Commission for the Exhibition of 1851 (W.T.W.) and S.E.R.C. (C.M.H. and N.D.P.) for the financial support.

## References

- 1 I.D. Salter, Adv. Organomet. Chem., 29 (1989) 249.
- 2 B.F.G. Johnson, D.A. Kaner, J. Lewis and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1981) 753; B.F.G. Johnson, J. Lewis, W.J.H. Nelson, P.R. Raithby and M.D. Vargas, J. Chem. Soc., Chem. Commun., (1983) 608; S.R. Drake, K. Henrick, B.F.G. Johnson, J. Lewis, M. McPartlin and J. Morris, J. Chem. Soc., Chem. Commun., (1986) 928.
- 3 C.E. Housecroft and A.L. Rheingold, Organometallics, 6 (1987) 1332.
- 4 J.A.K. Howard, I.D. Salter and F.G.A. Stone, Polyhedron, 3 (1984) 567; T. Adatia, M. McPartlin and I.D. Salter, J. Chem. Soc., Dalton Trans., (1988) 751.
- 5 J.S. Bradley, Adv. Organomet. Chem., 22 (1983) 1.
- 6 A.G. Cowie, B.F.G. Johnson, J. Lewis and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1984) 1710.
- 7 B.F.G. Johnson, D.A. Kaner, J. Lewis, P.R. Raithby and M.J. Rosales, J. Organomet. Chem., 231 (1982) C59; B.F.G. Johnson, D.A. Kaner, J. Lewis and M.J. Rosales, J. Organomet. Chem., 238 (1982) C73.
- 8 D. Braga, P.F. Jackson, B.F.G. Johnson, J. Lewis, M. McPartlin, J.N. Nicholls and M.D. Vargas, J. Chem. Soc., Chem. Commun., (1982) 966.

<sup>\*</sup> Crystal data: [Os<sub>6</sub>AuC(CO)<sub>20</sub>(μ-OMe)]·CH<sub>2</sub>Cl<sub>2</sub>, C<sub>23</sub>H<sub>5</sub>AuCl<sub>2</sub>O<sub>21</sub>Os<sub>6</sub>, M = 2026.4, Triclinic, space group P<sub>1</sub>, a = 9.724(2), b=11.807(2), c=16.578(4) Å, α=94.68(2), β=95.21(3), γ=91.17(2)°, V=1888.4 Å<sup>3</sup>, D<sub>c</sub> = 3.563 g cm<sup>-3</sup>, Z = 2, F(000) = 1760, λ(Mo-K<sub>α</sub>) = 0.71069 Å, μ(Mo-K<sub>α</sub>) = 242.03 cm<sup>-1</sup>. Red irregular block, crystal dimensions: 0.08 × 0.33 × 0.56 mm. 5290 reflections measured on Stoe-Siemens four circle diffractometer (5.0 ≤ 2θ ≤ 45.0°), corrected for absorption, 4942 unique reflections and 3320 observed with F > 4σ(F), structure solved by a combination of direct methods and difference Fourier techniques and refined by blocked full-matrix least-squares analysis, with Os and Au atoms assigned anisotropic displacement parameters. The asymmetric unit contains a solvent molecule of CH<sub>2</sub>Cl<sub>2</sub> which has been confirmed by <sup>1</sup>H NMR of a crystallised sample of 1 [δ(CDCl<sub>3</sub>): 5.32 (s, CH<sub>2</sub>Cl<sub>2</sub>)]. The weighting scheme employed was w = 6.3428/[σ<sup>2</sup>(F)+0.0012F<sup>2</sup>]. The final residuals were R = 0.086 and R<sub>w</sub> = 0.088. The atomic coordinates for this work have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (UK).